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Abstract

A new electromagnetic kinetic electron § f particle simulation model
has been demonstrated to work well at large values of plasma 3 times
the ion-to-electron mass ratio [Y. Chen and S.E. Parker, J. Comput.
Phys. 198 463 (2003)]. The simulation is three-dimensional using
toroidal flux-tube geometry and includes electron-ion collisions. The
model shows accurate shear Alfvén wave damping and microtearing
physics. Zonal flows with kinetic electrons are found to be turbulent
with the spectrum peaking at zero and having a width in the frequency
range of the driving turbulence. This is in contrast with adiabatic elec-
tron cases where the zonal flows are near stationary, even though the
linear behavior of the zonal flow is not significantly affected by kinetic
electrons. Zonal fields are found to be very weak, consistent with the-
oretical predictions for 8 below the kinetic ballooning limit. Detailed
spectral analysis of the turbulence data are presented in the various
limits.

1 Introduction

Recently, a new electromagnetic gyrokinetic simulation model has been de-
veloped that works well with a realistic mass ratio and at (’s typical of
tokamak plasmas(l, 2]. Here, new linear and nonlinear results using this
simulation model are reported. This simulation has been linearly bench-
marked in toroidal geometry with the continuum codes GS2[3] and GYRO
[4] and shows good agreement. Until recently, three-dimensional gyrokinetic
particle simulations with realistic geometry have used the adiabatic electron
approximation[5, 6, 7, 8]. Continuum models[3, 9, 4] have previously reported



electromagnetic results. Both continuum and § f particle-in-cell (PIC) mod-
els may be of value in various limits. Both models, together, provide an
important nonlinear cross-check. PIC models are typically more efficient at
solving kinetic problems that require fine phase-space resolution[10]. Hence,
are useful for ensuring convergence in terms of resolving the five-dimensional
phase space.

The difficulty with a fully kinetic treatment of electrons in gyrokinetic
particle simulations using the f-method arises from the fact that for typical
tokamak plasmas, where the electron and ion temperatures are of similar
magnitude, the electrons move a factor of ~ y/m;/m, (m; and m, are the
masses of the ion and the electron) faster than the ions along the magnetic
field. This poses a stringent constraint on the time step, kjvreAt < 1. To
overcome this constraint a new kinetic electron model that uses a generalized
split-weight scheme [11], where the adiabatic part is adjustable, along with
a parallel canonical momentum formulation has been developed[12]. This
was done in three-dimensional toroidal geometry using field-line-following
coordinates[13] and includes electron-ion collisions. The simulation reported
here uses a timestep only one-third smaller than the time step typically used
in adiabatic electron simulations.

In this paper we present our most recent simulation results on microtur-
bulence with both ion-temperature-gradient and trapped-electron drive for
typical H-mode plasmas. The spectral features of this type of turbulence is
examined. We focus on wavelengths in the £, p; ~ 0.1 — 1 range and do not
address electron-temperature-gradient (ETG) turbulence on p, scale lengths.
This makes the drift-kinetic approximation valid for electrons|3].

We begin by giving a very brief overview of of the simulation model.
Further details can be found in Refs. [1, 2]. Then, we show that the simulation
model works well on two basic electromagnetic test problems: Shear Alfven
wave damping, and the collisionless tearing mode instability. Next, we discuss
recent linear and nonlinear results where the ion and electron gradient scale
lengths are the same, 7, = n;, 7, is a given species, a = (i,e), ratio of
temperature gradient to density gradient. Past reported results used a zero
electron-temperature-gradient to avoid ETG drive. It turns out that setting
ne = 0 was unnecessary. Finally, spectral analysis[14] of the turbulence is
given showing the features of zonal flows in the adiabatic and electromagnetic
limits.



2 Model equations

Three analytical /numerical techniques are used for direct simulation of ki-
netic electrons in three-dimensional geometry with electromagnetic perturba-
tions. First, a canonical parallel momentum formulation [15] is used to elim-
inate numerical instabilities associated with finite-differencing of the 0A, /0t
term in the parallel electric field, B, = —V¢—0A, /0t. Second, a split-weight
method [11, 12] is used for the electrons that permits larger timesteps. Third,
careful numerical evaluation of the (wZ,/c¢*) A term that appears in Ampere’s
law in the canonical parallel momentum formulation permits accurate elec-
tromagnetic simulations at moderate 3, see Ref. [1] for details.

The canonical momentum formulation of the gyrokinetic equations are
used where pjo = V)0 + (¢a/Ma) (4;) is a canonical coordinate. The gyroki-
netic equation is

Ofa

E + VGa - vfa +p||a

0fa

% = C(fa)a (1)

where a = 1, €,

Pla = %B -V {(¢) — Lep.vB+ Vja(b-Vb) - vy + q—aVGa -V{4)), (2)
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VGa = VUjab + Vda + Vg is the guiding center velocity. b = b + B
vl + v} /2 . . .
Ve = WB x VB is the drift velocity for low [ tokamak plasmas

with 8 < 1, vg = (E) x b/B. Here Q, is the gyrofrequency. The electrons
are described by the drift-kinetic equations due to their small gyro radii,
hence (@) = ¢, etc., for electrons. C(f,) is the collision operator where only
electron-ion collisions are considered and a Lorentzian operator is used[16,
17, 1, 2]. Eq. (1) along with gyrokinetic Poisson equation (quasi-neutrality)
and Ampere’s equation make a complete set. Details on these equations and
the methods used to solve them can be found in Ref. [1].

The simulation is toroidal and uses a low-3 magnetic equilibrium with
concentric flux surfaces. The magnetic field strength is B(r,0) = By(1 —
(r/Ryp) cos ). Field-line-following coordinates are used[13] and (z,v, z) are
defined by z =r — ro, y = (r0/q0) (g0 — () and z = goRy0, where (r,0, () are
the usual toroidal coordinates. Ry is the major radius at the magnetic axis,
ro is the minor radius at the center of the simulation domain, and gy = ¢(ro)
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the safety factor. The simulation domain along the field line is 2mqgy Ry in
length. Periodic boundary conditions are used in x and y, while the toroidal
boundary condition [13] is used in z. By assuming periodicity in radius at
fixed y, relaxation of the background equilibrium temperature and density
profiles is prevented, even if no particle and heat sources are used. However,
spatially localized perturbations of the temperature and density profiles are
free to occur (and do).

3 Shear Alfven wave and tearing mode tests

Here, we examine two classic low-frequency electromagnetic plasma problems
to demonstrate the robustness of the simulation model. First, the linear
damping of the shear Alfven wave. Second, the linear and nonlinear evolution
of a collisionless kinetic tearing mode.

The damping of the shear Alfven wave is primarily due to electron Landau
damping and is a good test of kinetic electron electromagnetic physics. This
test is done in the uniform plasma slab limit where exact numerical solution
to kinetic dispersion relation is possible for comparison with theory. This is
an important test of the simulation and this particular problem has been used
by many others in developing an electromagnetic kinetic electron model[18,
19, 20, 21]. Figure 1 shows the damping rate versus 5. The solid line shows
the damping rate from the kinetic dispersion relation (theory) compared to
that from simulation shown as triangles. Good agreement between theory
and simulation is observed. For this case kjp; = 7.14 x 107, kyp; = 0.2,
ky =0, T; = T,, m;j/m, = 1837, éx = 6y = 0.5p;, 6z = 7/(16k)) and there
were 32 electrons per grid cell.

A second important electromagnetic test of or simulation model is the
collisionless microtearing mode[22, 23, 24]. Here, we use a two-dimensional
bounded slab model and neglect the ion response dn; = 0. The dimensionality
of the simulation is reduced from three to two by setting k£, = 0. An electron
(z — Ls/2)

2
set to —engvg and a = 0.5p;. Fig. 2 shows the total nonlinear saturated A,
contours of A correspond to traces of the magnetic field lines. Fig. 3 shows
the nonlinear evolution of A for the fundamental k,, integrated over all
x. Nonlinear saturation is observed and the level agrees fairly well with the
theoretical level predicted by Drake and Lee[22]. We have developed an linear

current layer is initialized having the form ciexp — . Here, ¢ is



eigenmode calculation of the collisionless microtearing mode. To make the
theory tractable, the ion response is neglected and we set ¢ = 0, so that E)
is from induction only. This is similar to what was done by Katanuma and
Kamimura[23]. Fig. 4 shows excellent agreement between the gyrokinetic
simulation and the eigenmode calculation. For all the microtearing mode
results L, = 2.5p;, L, = 6.28p;, B = 0.01, m;/m, = 1837 and c¢/w,. = 0.23p;.
The width of the current layer, a, is varied in Fig. 4 keeping k, = 1.0p;"
fixed. More details on this tearing mode problem will be reported in a future
publication[25].

4 Turbulence simulation results with 7, # 0

Here we present how the growth rate and the ion heat diffusivity scales with
R/Ly and B, where R is the major radius, Ly is the temperature gradient
scale length and (3 is the plasma beta. We use typical H-mode parameters
from the the DIII-D Cyclone Base Case [26, 27]. We set the ion and elec-
tron temperature gradient scale lengths equal to each each other (or 7, = n;)
where 1, = Lyo/Lrq. In past results reported, 7, was set to zero[l, 2]. The
equilibrium gradient scale lengths are Ry/L,, = 2.2, Ry/L1; = Ry/ L. = 6.9,
Toi = Toe, r0/Ro = 0.18, o = 1.4, § = (r0/q0)(dg/dr) = 0.78. Figure
5 shows the ion heat diffusivity (squares) and linear growth rate (circles)
versus R/Ly with n. = n;. A super-critical R/Ly is still present with elec-
tromagnetic perturbations and kinetic electrons as was found in adiabatic
electron simulations[27, 26]. However, with kinetic electrons, the trapped
electron drive cause both the linear growth rate and the nonlinear ion heat
flux to be much higher. Both the linear and the up-shifted nonlinear critical
gradients are found to be lower with kinetic electrons relative to the adia-
batic electron case. The R/Ls scan in Fig. 5 is done using 8 = 4 x 1074
which is small 8 and not physically important. For this scan the results are
essentially electrostatic.

Figure 6 shows the on heat diffusivity (squares) and linear growth rate
(circles) versus . Only weak finite-/ stabilization is observed and there is
not much reduction in ion heat transport as well. This result is interesting
because it is in contrast to the previously published results in Ref. [2] where
ion heat transport was greatly reduced with increasing  below the kinetic
ballooning limit. This indicates that one might see reduced transport with
increasing 8 only when the ion temperature profile is more peaked relative



to the electron profile so that n, < n;.

The ion heat diffusivity, x;, is calculated in Figs. 5 and 6 from the ion
heat flux <f dvt - vE%mi025fi> divided by 1/Lty). For these results the per-
pendicular box size was 65.3p; X 64p;, the grid number was 64 x 64 x 32.
The number of particles per species was 4,194,304 and the time step was
wiAt = 3. The collisionality was set to veL,/vr; = 0.136, and the mass
ratio was m;/m, = 1837.

The experimentally measured ion heat diffusivity for the DIII-D shot
(shot #81499 at time t=4000ms, on which the base case parameters are
based) is x; = 0.16 [27] in the units shown in Figs. 5 and 6. This is lower
than the adiabatic electron level and much lower than the results presented
here with kinetic electrons. Other effects may be playing a role such as
effects such as profile variation, equilibrium shear flows, realistic magnetic
equilibrium and impurities. All these effects are not modeled here, hence
the discrepancy between simulation and experimental data. Even so, the
results presented here indicate that kinetic electrons have a dramatic effect
on transport and cannot be simply treated as adiabatic.

5 Spectral analysis of turbulence data

Next, we discuss the spectral features and characteristics of the turbulent
fluctuations observed in the simulations. We use the GKV data analysis tools
developed by Nevins[14]. The various spectral data will be described in terms
of field quantities which are functions of (z,y, 2,t) where the coordinates
(x,y, z) are the field line following coordinates defined in Sec. 2.

Figs. 7 and 8 show the two-dimensional power spectrum of electrostatic
potential for both adiabatic electrons and kinetic electrons. The parameters
are the same as in Sec. 3, but 16, 777,216 particles were used. Similar anal-
ysis has been done using 33, 554,432 particles and the results do not change.
This diagnostic is obtained by choosing z (radial) and z (along the field line)
to be in the center of the domain. Fig. 7 is the result with adiabatic elec-
trons and Fig. 8 is electromagnetic with § = 0.4% and kinetic electrons with
Ne = 0. This value of [ is chosen so that the overall fluctuation level is the
same for both cases due to finite-4 stabilization. The results with kinetic
electrons in the electrostatic limit are similar, but the overall amplitudes are
much higher due to trapped electron drive without any finite-3 stabilization.
We will refer to the electromagnetic case with kinetic electrons as the “elec-



tromagnetic case,” but it is important to note that the electrostatic kinetic
electron case shows similar features. It is the fact that there are kinetic elec-
trons that makes the spectral features different. From these power spectra,
one can clearly see the presence of the Geodesic Acoustic Mode (GAM) and
the and the zonal flow[28, 29] at zero k,. The turbulent spectrum is also
observed at negative phase velocity, in the ion diamagnetic drift direction.
The electromagnetic case has more energy in the turbulence region of (k,, w)
and less in the zonal flow region relative to the adiabatic case. Figs. 6 and 7
are contour plots using the same scale. “a.u.” in the figure signifies that the
units are arbitrary, but the same units are used in all spectral plots reported
here.

Figs. 8 and 9 show the two-dimensional power spectrum of the flux-
surface-averaged electrostatic potential in (k;,w). These diagnostics were
taken at fixed y and z in the middle of the simulation domain. Fig. 8 is the
adiabatic electron case and Fig. 9 is the electromagnetic kinetic electron case.
The adiabatic electron case has zonal flows that are very peaked at w = 0
and extremely coherent GAMs as well. On the other hand, the electromag-
netic case has quite turbulent zonal flows peaked at w = 0. The width of
the zonal flow spectrum corresponds with the correlation time of the driving
turbulence. Figs. 10 and 11 show the flux-surface-averaged electrostatic po-
tential as a function of (z,t). Fig. 10 is the adiabatic electron case, where
it is observed that the zonal flow is near stationary after initial, fairly long
lived, transients. The time axis for Fiigs. 10 and 11 correspond to a total time
of 1200Lr/c,. The fast oscillations correspond to GAM oscillations. In con-
trast, Fig. 11 shows the electromagnetic case with time-dependent, irregular
(turbulent) zonal flows. From Fig. 11, one might assume the zonal flows are
oscillatory, but from Fig. 9 it is clear that they are turbulent about w = 0.
Fast GAM oscillations are observed for the electromagnetic case as well.

These differences must be associated with nonlinear physics because we
have previously shown that the linear zonal flow dynamics changes little
between adiabatic and kinetic electron[2]. The adiabatic electron approxi-
mation requires that electron motion is tied to a flux surface. This is not
the case with kinetic electrons that can ExB drift across flux surfaces. It
has also been shown in reduced fluid models that a non-adiabatic electron
response can block the low-k£ condensation of fluctuation energy observed
in Hasegawa-Mima turbulence[30, 31]. Finally, we have analyzed the flux-
surfaced-averaged A, or zonal fields[32, 33, 34] in a similar fashion. We
find the zonal fields to be relatively weak with an amplitude approximately

7



5 times smaller than the turbulent A). This is consistent with theoretical
predictions in Ref. [33] that show there is a strong shielding effect on the
zonal fields that is on the electron skin depth scale[35].

6 Summary

Results from §f PIC simulations of electromagnetic turbulence were pre-
sented. The simulation has been benchmarked linearly and shown to per-
form well on basic electromagnetic plasma problems. Namely, linear shear
Alfvén wave damping and linear and nonlinear collisionless microtearing. § f
PIC methods are useful for ensuring proper resolution of complicated phase
space dynamics. Turbulence simulations of typical H-mode plasmas show
that a nonlinear up-shift in the critical gradient is still observed with elec-
tromagnetic kinetic electrons, but the overall critical gradient is much lower
due to trapped electron drive. Finite-f stabilization is strong when 7, = 0,
but weak when 1, = n;. This means that S dependence may be stronger in
plasmas where the ion temperature profile is more peaked than the electron
temperature profile. Spectral properties of kinetic electron turbulence were
reported. Zonal flows are found to be more turbulent with kinetic electrons
in contrast to near stationary zonal flows with adiabatic electrons. Linear
behavior of the zonal flow is similar in both cases. More theoretical work
is needed to explain the turbulent zonal flows with kinetic electrons. Zonal
fields are found to be weak, consistent with theoretical predictions.
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Figure 1: Damping rate versus 3 for the shear Alfven wave. The solid line
shows the damping rate from the kinetic dispersion relation (theory) com-
pared to that from simulation shown as triangles.
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Figure 2: Contour plot of total A(z,y) showing tearing mode.
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Figure 3: Nonlinear evolution of § A (k, = 27/Ly,).
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Figure 4: Tearing mode Growth rate versus kya. Simulation results shown
as an asterik and eigenmode calculation shown as the solid line.
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Figure 5: Ton heat diffusivity (squares) and linear growth rate (circles) versus
o scan with 7, = 7;. Sub-critical £ still present with electromagnetic

perturbations and kinetic electrons.
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Figure 6: Ton heat diffusivity (squares) and linear growth rate (circles) versus
B with n, = n;. Weak finite § stabilization and not much reduction in ion
heat transport is observed.
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Figure 7: Two-dimensional power spectrum |q)|2(x, k_, o) in the adiabatic
electron limit showing the dominance of the zonal flows.
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Figure 8: Two-dimensional power spectrum |q)|2(x, k_, w) for electromagnetic
kinetic electron turbulence showing a more turbulent spectrum overall.
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Figure 9: Two-dimensional fower spectrum of the flux-surface-averaged
electrostatic potential |<¢>| (kx’ ) for electrostatic adiabatic electron
turbulence. Zonal flow spectra 1s narrowly peaked about ® = 0.
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Figure 10: Two-dimensiona] power spectrum of the flux-surfaced-averaged
electrostatic potential |<¢>|"( kX, ) for electromagnetic kinetic electron
turbulence showing a more turbulent zonal flow spectrum.
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Figure 11:The flux-surface-averaged electrostatic potential for electrostatic
adiabatic electron turbulence. Zonal flows are near stationary.
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Figure 12: The flux-surface-averaged electrostatic potential for electromagnetic
kinetic electron turbulence. Zonal flows are more turbulent.
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